tkenichi の日記

毒舌皮肉系恥さらし日記

リーマン計量の差の変分3

連続体力学の概念とリーマン幾何の概念の対応を考えてみる。をリーマン多様体の間*1の微分同相写像とする。この写像は等長的(すなわち)であることは仮定せずに、等長的なものからどれくらい離れているかを考える。接ベクトル束に定義される微分写像を とす…

リーマン計量の差の変分2

前回の続き。まずは記号の定義。 をリーマン多様体、をコンパクト多様体からのはめ込みとする。はめ込みで誘導されるリーマン計量をとする。に定義されるLevi-Civita接続は、以下を満たす接ベクトル束の接続である。をによる共変微分という。 のリーマン計量…

リーマン計量の差の変分

自分なりの回答にはまだたどり着いていないのだけれど、問題の動機づけとその整理をしておく。をリーマン多様体、をコンパクト多様体からのはめ込みとする。はめ込みで誘導されるリーマン計量をとする。にもともと与えられているリーマン計量をとする。はめ…

曲げのエネルギー

曲面の曲げのエネルギーは平均曲率の2乗を積分したものとして与えられる。 平均曲率は第二基本形式の固有値の平均値と定義されるが、幾何学的には曲面を法線ベクトル方向に膨らませたときに変化する曲面の面積の1次微分である。2次微分がガウス曲率とみなせ…

多面体を三角形分割3.1

多面体の三角形分割から導かれる簡単な系。トーラス結び目 で のものについては、 の多角形表示が存在することが知られている。はいわゆる Trefoil Knot で、6角形表示がある。 T(4,3) - Knot Atlas は8角形表示がある。この種数は3であり、その種数を与える…

多角形を三角形分割3

多角形を三角形分割 - tkenichi の日記 の多角形の三角形分割の表を久しぶりに更新する。多様体かどうかを判定するアルゴリズムを見直して少し速くなった。 オイラー数 向きづけ可能性 3 4 5 6 7 8 9 一般形 1 T 1 2 5 14 42 132 429 カタラン数 http://oeis…

組み合わせ三角形ポリゴンの判定アルゴリズム(1)

2次元の有限単体的複体を考える。頂点集合を自然数で番号付けして、三角形の集合と考えると、相異なる3つの自然数の組の集合と考えることができる。 四角形の頂点を 0,1,2,3 とすると、三角形分割して単体的複体とみなすと である。次の条件を判定するできる…

方程式で定義された曲面の曲率

通常、曲面の曲率はパラメータ表示が与えられた時の式で与えられているが、実際の曲面は方程式としてあらわされることが多い。そこで、方程式が与えられているときの曲率の計算式をまとめておこう。関数 が与えられているとき、方程式 で表される曲面の曲率…

衝突の復習

古典物理学で衝突を記述する場合、重心座標系で考える場合が多いが、鏡映変換のアイディアを用いると比較的わかりやすい。鏡映変換とは、 に直交する平面を鏡として、鏡に映る像を与える写像である。 が単位ベクトルの時には、より単純に と書ける。それぞれ…

運動量の復習

シンプレクティック多様体 にリー群 が を保つように作用しているとする。運動量写像とは からリー環の双対 への写像 であって、 同変かつ、リー環の元 に対して、 と置くとき、 が成り立つものをいう。ただしここで はリー環の基本ベクトル場である。 後半…

振り子と楕円関数

単振り子は振幅が大きくないときには、単振動とみなすことができると考える。振幅が大きいときは楕円関数で記述され、周期は完全楕円積分で表すことができる。以下に簡単にまとめておく。 単振り子の運動方程式の導出 長さlの糸の先に質量mのおもりをつける…

最小交叉数6の結び目

WebGLで結び目を描くことの続き。すべて12の辺で表現し、上から順に14個、18個、18個の三角形でザイフェルト曲面を表現している。これは結び目の種数を与えるザイフェルト曲面でもある。 隣接する三角形が重ならないようにするには、どの4個の頂点をとっても…

最小交叉数5以下の結び目

WebGLで結び目を描くことの続き。ダブルクリックすると、結び目とザイフェルト曲面が切り替わります。 いわゆるクローバー結び目(Trefoil knot) 最小交叉数が5の結び目

Figure Eight 結び目

8の字結び目を折れ線で表現したときのザイフェルトポリゴンを表示するのに WebGL を試してみた。 予想以上に使いやすいし、速度もそれほど遅くない。

穴あき曲面の展開

閉曲面(いわゆる境界のないコンパクトな曲面)の分類はよく知られていて、曲面に切れ目を入れて展開した多角形を張り合わせることで表現することができる。向き付け可能な場合は球面またはg個のトーラスの連結和として表すことができ、多角形の張り合わせで…

多角形を三角形分割2

平面上の多角形の三角形分割を列挙するプログラムを作成してみた。先日の記事で紹介したような拡張された三角形分割ではなく、総数がカタラン数で与えられるような三角形分割である。 def catalanEach(ary) case ary.size when 2 yield [] when 3 yield [ary…

多角形を三角形分割

四角形を三角形に分割する方法は2通り、5角形を三角形に分割する方法は5通りある。この個数は一般にカタラン数というもので与えられ、一般にn+2角形を三角形に分割する方法は 通りである。さて、実は上の定義は平面上における凸多角形の三角形分割の個数であ…

最小コストな路線ネットワーク

次のような問題を考えよう。 まだ鉄道が敷かれていない複数の駅を連結するような最小の路線ネットワークを作る。このとき、それぞれの駅間を線路でつなぐためのコストが与えられているとして、最小のコストで実現できる路線ネットワークは何か? 駅を頂点、…

穴の個数を数える

入力としてデジタル画像を与えて、色がついていないところを穴として、いくつあるかを数えるソフトウェアはあるだろうか?2次元図形の穴の個数を数えるということは、ホモロジー群を計算するということである。計算ホモロジーという分野が最近発展しているら…

ピアニストの脳を科学する

ピアニストの脳を科学する 超絶技巧のメカニズム作者: 古屋晋一出版社/メーカー: 春秋社発売日: 2012/01/23メディア: 単行本(ソフトカバー)購入: 7人 クリック: 91回この商品を含むブログ (16件) を見る人間が記憶する能力は言語化によるところが大きいの…

6つの辺からなる閉じた折れ線が三葉結び目になる条件(2)

前回説明した内容の補足である。 ここでは常に と がホップ絡み目 と がホップ絡み目 と がホップ絡み目 が同時に成り立つ場合を考えることにする。 補題1 と は2成分の自明な絡み目である。 補題2 ホップ絡み目 のザイフェルト曲面 は \triangle P_2 P_4 …

6つの辺からなる閉じた折れ線が三葉結び目になる条件

たぶん正しいと思うので、はじめに結果を書いてしまう。 3次元空間内の6点を結んでできる閉じた折れ線が 三葉結び目になる必要十分条件は と がホップ絡み目 と がホップ絡み目 と がホップ絡み目 の3つが同時に成り立つ場合である。 必要条件は、対偶を考え…

オープンサイエンス革命

オープンサイエンス革命作者: マイケル・ニールセン,高橋洋出版社/メーカー: 紀伊國屋書店発売日: 2013/03/28メディア: 単行本この商品を含むブログ (3件) を見るIT の世界では Linux をはじめとするオープンソース文化によりさまざまな人々の貢献の成果を利…

2100年の科学ライフ

2100年の科学ライフ作者: ミチオ・カク,斉藤隆央出版社/メーカー: NHK出版発売日: 2012/09/25メディア: 単行本 クリック: 15回この商品を含むブログ (8件) を見る 物理学者の視点で100年後の世界を予測するとどうなるか。 いわゆる未来学者や経済学者の予想…

ペトロス伯父と「ゴールドバッハの予想」

ペトロス伯父と「ゴールドバッハの予想」 (ハヤカワ・ノヴェルズ)作者: アポストロスドキアディス,Apostolos Doxiadis,酒井武志出版社/メーカー: 早川書房発売日: 2001/03メディア: 単行本購入: 6人 クリック: 94回この商品を含むブログ (14件) を見る連休中…

この世で一番面白いミクロ経済学

この世で一番おもしろいミクロ経済学――誰もが「合理的な人間」になれるかもしれない16講作者: ヨラム・バウマン,グレディ・クライン,山形浩生出版社/メーカー: ダイヤモンド社発売日: 2011/11/26メディア: 単行本(ソフトカバー)購入: 19人 クリック: 214回…

State Complex

もともとはロボットアームの状態遷移を記述するためのものだったと思われるが、意外と応用がありそうなものに Configuration Space と State Complex と呼ばれる概念がある。グラフの場合に特化して、簡単に要約してみる。グラフ G があるとする。向きはつい…

Helly の定理

離散幾何の有名な定理で Helly の定理というのがある。 の m 個の凸集合について、任意の n+1 個の部分族の交わりが非空ならば、すべての交わりも非空である。逆は自明なので、以下が言える。 Helly の定理 この証明をいくつか探しているうちに、Homology を…

クーポンコレクター問題

クーポンコレクター問題とは、n種類のクーポンがランダムに入っている商品について、全部そろえるにはどれくらい買えばよいか、という問題である。キャラクターグッズのおまけをそろえたりする場合を考えればわかりやすいだろう。n種類のクーポンがすべて同…

非対称の起源

非対称の起源―偶然か、必然か (ブルーバックス)作者: クリス・マクマナス,大貫昌子出版社/メーカー: 講談社発売日: 2006/10/21メディア: 新書購入: 4人 クリック: 11回この商品を含むブログ (17件) を見るサイエンスの本で面白いのは2種類あると思う。ひと…